Electrical and electronic
Industrial
robot

Materials for Robots

Categories of robots

A 2014 white paper from Japan’s New Energy and Industrial Technology Development Organization (NEDO) defines robots as “intelligent mechanical systems equipped with three component technologies: sensors, actuators, and intelligent control systems.”*

Robots may be further classified by the purpose they serve: robots used to replace work done by humans in industrial production and manufacturing environments are known as industrial robots, while robots that assist in providing services in areas such as medical care, logistics, shipping, cleaning, and housework are known as service robots.

*:https://www.nedo.go.jp/library/robot_hakusyo.html

Asahi Kasei supports the manufacturing efforts of our customers in the robotics industry by providing a range of materials with high-strength, high-rigidity, outstanding sliding behavior, excellent creep resistance, superior electrical properties. For example, choosing engineering plastics with properties appropriate for arms, reduction gears, actuators, motors, electrical components can help solve problems by reducing weight and lowering manufacturing costs.

Mechanical component materials tenac MG210・POM/CNF composite materials

TENAC™ MG210 polyacetal resin

The excellent mechanical properties and friction/abrasion behavior of polyacetal (POM) make it a common choice for mechanical components such as gears and bearings.

Asahi Kasei’s TENAC™ MG210 polyacetal resin is classified as a homopolymer, boasting excellent mechanical properties even compared to other POM materials. MG210 grades are based on homopolymers that offer durability properties–including creep resistance and fatigue behavior–superior to those of standard POM (copolymer), and TENAC™ MG210 grades improve these properties even more.

Asahi Kasei recommends to use TENAC™ MG210 polyacetal resin for mechanical components and other robot applications which may lead to extend product lifetimes and reduce product size

robot

POM/CNF composite materials

The CNFs developed by Asahi Kasei are biomass fibers containing cotton-linter constituents that are miniaturized via sophisticated techniques to sizes as small as nanometer scales. Asahi Kasei is developing technologies for nanodispersing CNFs in a variety of resins, ensuring a single, consistent manufacturing process from CNF production to CNF composites.

POM/CNF composite materials combine Asahi Kasei’s highly heat-resistant CNFs with POM. Key features of these materials include good sliding properties, good rigidity at high temperature, minimal shrinkage, a low coefficient of thermal expansion, and good creep properties at high temperature as compared to general POM. POM/CNF composite materials are well-suited for use in fabricating sliding components with smaller sizes, thinner walls, and lighter weights.

CNF-reinforced thermoplastics gear

Materials for reduction gears Leona

LEONA™ polyamide resins

Reduction gears are mechanical converters that decelerate and transform rotational motion produced by motors to yield the required forces.

Asahi Kasei is developing materials that combine the good fatigue behavior of polyamides with outstanding friction and abrasion resistance.

Decelerator

Vibration-control materials xyron

XYRON™ modified polyphenylene ether resins

Asahi Kasei’s XYRON™ modified polyphenylene ether (PPE) resins combine the usual flame retardance, dimensional stability, and heat resistance of modified PPE resins with vibration-control materials boasting high loss coefficients to lend good damping properties to the entire product lineup. We recommend to use vibration-control modified PPE resins with the high loss coefficient which may provide vibration-suppression effects that help to realize noise-suppressing designs.

 

Asahi Kasei’s engineering plastics are also useful for a broad range of other applications, including motor end caps, connectors, high-voltage components, and more. For more information, please contact us using the links below.

Technical support for design and manufacturing

Resin CAE modeling and simulation support

Asahi Kasei offers a wide range of simulation capabilities based on resin CAE technology to help you design products based on engineering plastics.

For example, switching from metal to engineering plastics for a robot arm or frame requires design optimization of product shapes to ensure satisfaction of all relevant strength requirements.

We offer simulation and optimization support–customized to accommodate the unique features of individual resins–to assist in your product design and manufacturing process.

CAE

Other themes

Related information

TENAC™ polyacetal resins

TENAC™ has excellent self-lubricating nature, fatigue behavior, and oil resistance. It is used in gears, bearings, automotive interiors and fuel parts.

LEONA™ polyamide resin

LEONA™ has excellent heat resistance, strength and toughness, insulation, and oil resistance. It is widely used in automotive parts, electrical and electronic parts.

XYRON™ m-PPE resin

XYRON™ has excellent flame retardancy, electrical properties, dimensional stability, and water resistance. It is used in photovoltaics (PV), batteries, and 5G communication components.